Differing-Inputs Obfuscation and Applications

نویسندگان

  • Prabhanjan Vijendra Ananth
  • Dan Boneh
  • Sanjam Garg
  • Amit Sahai
  • Mark Zhandry
چکیده

In this paper, we study of the notion of differing-input obfuscation, introduced by Barak et al. (CRYPTO 2001, JACM 2012). For any two circuits C0 and C1, a differing-input obfuscator diO guarantees that the non-existence of an adversary that can find an input on which C0 and C1 differ implies that diO(C0) and diO(C1) are computationally indistinguishable. We show many applications of this notion: We define the notion of a differing-input obfuscator for Turing machines and give a construction for the same (without converting it to a circuit) with input-specific running times. More specifically, for each input, our obfuscated Turning machine takes time proportional to the running time of the Turing machine on that specific input rather than the machine’s worst-case running time. We give a functional encryption scheme that allows for secret-keys to be associated with Turing machines, and thereby achieves input-specific running times. Further, we can equip our functional encryption scheme with delegation properties. We construct a multi-party non-interactive key exchange protocol with no trusted setup where all parties post only logarithmic-size messages. It is the first such scheme with such short messages. We similarly obtain a broadcast encryption system where the ciphertext overhead and secret-key size is constant (i.e. independent of the number of users), and the public key is logarithmic in the number of users. All our constructions make inherent use of the power provided by differing-input obfuscation. It is not currently known how to construct systems with these properties from the weaker notion of indistinguishability obfuscation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Public-Coin Differing-Inputs Obfuscation and Its Applications

Differing inputs obfuscation (diO) is a strengthening of indistinguishability obfuscation (iO) that has recently found applications to improving the efficiency and generality of obfuscation, functional encryption, and related primitives. Roughly speaking, a diO scheme ensures that the obfuscations of two efficiently generated programs are indistinguishable not only if the two programs are equiv...

متن کامل

Multi-input Functional Encryption with Unbounded-Message Security

Multi-input functional encryption (MIFE) was introduced by Goldwasser et al. (EUROCRYPT 2014) as a compelling extension of functional encryption. In MIFE, a receiver is able to compute a joint function of multiple, independently encrypted plaintexts. Goldwasser et al. (EUROCRYPT 2014) show various applications of MIFE to running SQL queries over encrypted databases, computing over encrypted dat...

متن کامل

Obfuscation-Based Non-black-box Simulation and Four Message Concurrent Zero Knowledge for NP

We show the following result: Assuming the existence of public-coin differing-input obfuscation (pc-diO) for the class of all polynomial time Turing machines, then there exists a four message, fully concurrent zero-knowledge proof system for all languages in NP with negligible soundness error. This result is constructive: given pc-diO, our reduction yields an explicit protocol along with an exp...

متن کامل

On Extractability (a.k.a. Differing-Inputs) Obfuscation

We initiate the study of extractability obfuscation (a.k.a. differing-inputs obfuscation), a notion first suggested by Barak et al. (JACM 2012): An extractability obfuscator eO for a class of algorithmsM guarantees that if an efficient attacker A can distinguish between obfuscations eO(M1), eO(M2) of two algorithms M1,M2 ∈M, then A can efficiently recover (given M1 and M2) an input on which M1 ...

متن کامل

Poly-Many Hardcore Bits for Any One-Way Function and a Framework for Differing-Inputs Obfuscation

We show how to extract an arbitrary polynomial number of simultaneously hardcore bits from any oneway function. In the case the one-way function is injective or has polynomially-bounded pre-image size, we assume the existence of indistinguishability obfuscation (iO). In the general case, we assume the existence of differing-input obfuscation (diO), but of a form weaker than full auxiliary-input...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013